One-hot Generalized Linear Model for Switching Brain State Discovery

Chengrui Li, Soon Ho Kim, Chris Rodgers, Hannah Choi, Anqi Wu ICLR 2024

Contents

- 1. Introduction
- 2. Method
 - Classic one-state GLM
 - HMM-GLM (HG)
 - Gaussian HMM-GLM (GHG)
 - One-hot HMM-GLM (OHG)
- 3. Inference
- 4. Experiments
 - Synthetic
 - Prefrontal cortex during a contingency task (PFC)
 - Barrel cortex during whisking

1 Introduction

Task

- Exposing meaningful and interpretable neural interactions is critical to understanding neural circuits.
- Inferred neural interactions from neural signals primarily reflect functional connectivities.
- A classical one-state generalized linear model (GLM) is only able to find a static functional connectivity graph.
- But in a long experiment, subject animals may experience different stages defined by the experiment, stimuli, or behavioral states, and hence functional connectivities can change over time.

Previous works and our contribution

- To model dynamically changing functional connectivities, prior work employs state-switching GLM with hidden Markov models (i.e., HMM-GLMs).
- However, this lacks biological plausibility, as functional interactions are shaped and confined by the underlying anatomical connectome.
- Our new one-hot HMM-GLM can model the dynamically changing functional connectivity confined by an underlying anatomical connectome, and provide stable and interpretable state transitions.

2 Method

Classic one-state GLM

- Spike train data $X \in \mathbb{N}^{T \times N}$, N neurons, T time bins.
- Firing rates of the n-th neuron at the t-th time bin

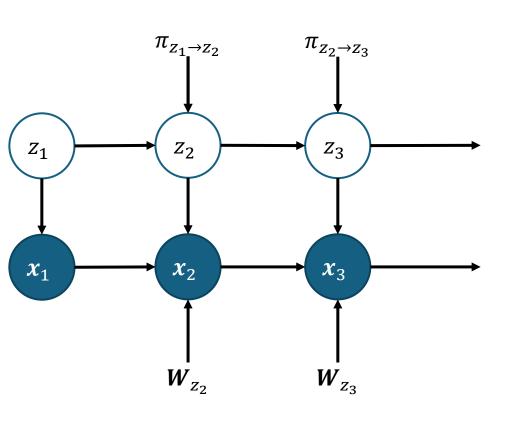
$$f_{t,n} = \sigma \left(b_n + \sum_{n'=1}^N w_{n \leftarrow n'} \cdot \left(\sum_{k=1}^K x_{t-k,n'} \phi_k \right) \right)$$

- Spike count $x_{t,n} \sim \text{Poisson}(f_{t,n})$.
- σ is a non-linear function (e.g., Softplus).
- b_n is the background intensity of the n-th neuron.
- $w_{n \leftarrow n'}$ is the weight of influence from neuron n' to neuron n.
- $\phi \in \mathbb{R}_+^K$ is the basis function summarizing history spikes.

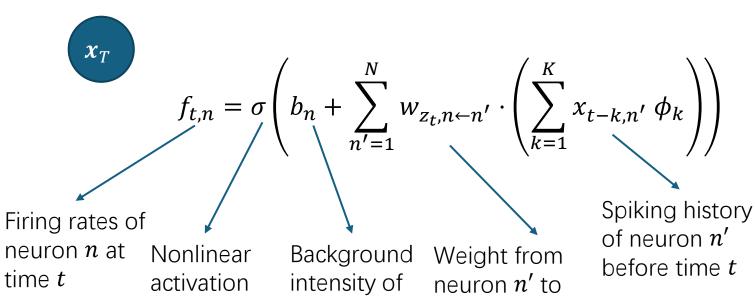
Naïve HMM-GLM (HG)

 Z_T

 $\sigma: \mathbb{R} \to \mathbb{R}_+$



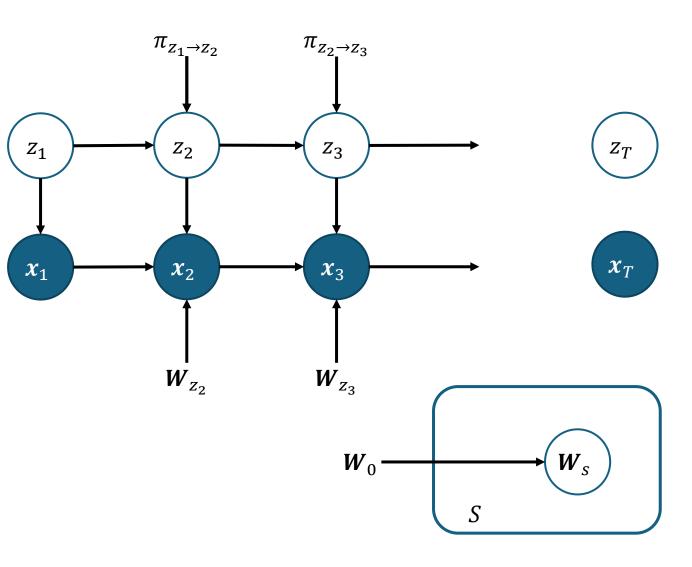
- S states, N neurons, T time bins.
- $\{x_t \in \mathbb{N}^N\}_{t=1}^T$ is the spike count for the N neurons
- $\{z_t \in \{1,2,\ldots,S\}\}_{t=1}^T$ is the state index
- $\Pi \in \mathbb{R}^{S \times S}$ is the state transition matrix
- $\{\mathbf{W}_{S} \in \mathbb{R}^{N \times N}\}_{S=1}^{S}$ is the weight matrix



neuron n in state z_t

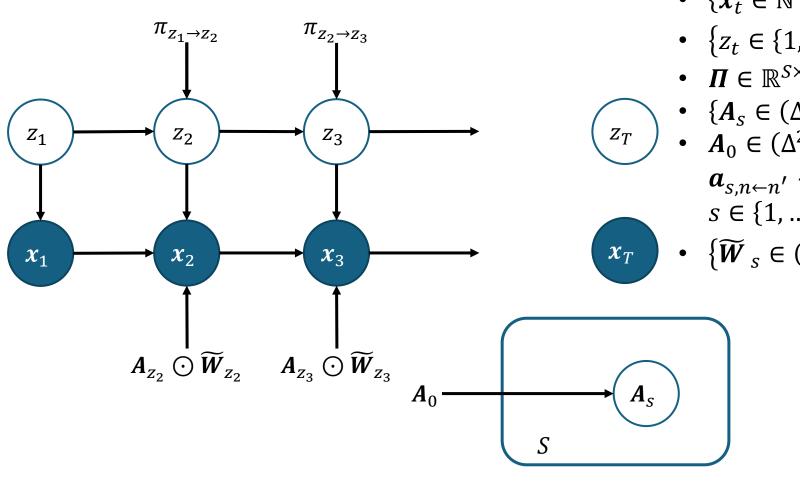
neuron *n*

Gaussian HMM-GLM (GHG)



- S states, N neurons, T time bins.
- $\{x_t \in \mathbb{N}^N\}_{t=1}^T$ is the spike count for the N neurons
- $\{z_t \in \{1,2,\ldots,S\}\}_{t=1}^T$ is the state index
- $\Pi \in \mathbb{R}^{S \times S}$ is the state transition matrix
- $\{A_s \in \{-1,0,1\}^{N \times N}\}_{s=1}^S$ is the adjacency matrix
- $\boldsymbol{W}_0 \in \mathbb{R}^{N \times N}$ is the Gaussian prior of \boldsymbol{W}_s , $w_{s,n \leftarrow n'} \sim \mathcal{N} \big(w_{0,n \leftarrow n'}, \sigma^2 \big)$, i.i.d. for $s \in \{1,\dots,S\}$
- $\{\boldsymbol{W}_{S} \in \mathbb{R}^{N \times N}\}_{S=1}^{S}$ is the weight matrix

One-hot HMM-GLM (OHG)



 $w_{s,n\leftarrow n'} = \left[(-1)a_{s,n\leftarrow n',\text{inh}} + (+1)a_{s,n\leftarrow n',\text{exc}} \right] \cdot \widetilde{w}_{s,n\leftarrow n'}$

•
$$\{x_t \in \mathbb{N}^N\}_{t=1}^T$$
 is the spike count for the N neurons

•
$$\{z_t \in \{1,2,\ldots,S\}\}_{t=1}^T$$
 is the state index

- $\Pi \in \mathbb{R}^{S \times S}$ is the state transition matrix
- $\{A_s \in (\Delta^2)^{N \times N}\}_{s=1}^S$ is the adjacency matrix
- $A_0 \in (\Delta^2)^{N \times N}$ is the Gumbel-softmax prior of A_s , $a_{s,n \leftarrow n'} \sim \text{Gumbel} \text{Softmax}(a_{0,n \leftarrow n'}, \tau)$, i.i.d. for $s \in \{1, ..., S\}$
- $\{\widetilde{\boldsymbol{W}}_{s} \in (0, \infty)^{N \times N}\}_{s=1}^{S}$ is the strength matrix

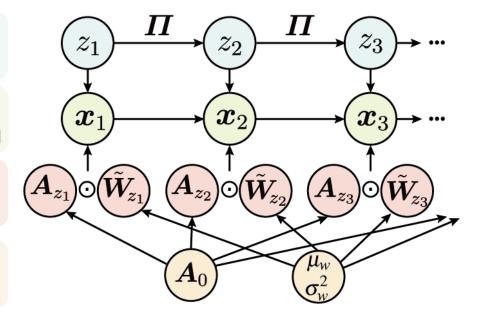
One-hot HMM-GLM, complete illustration

discrete latent state

discrete observation

GLM latent

prior parameter

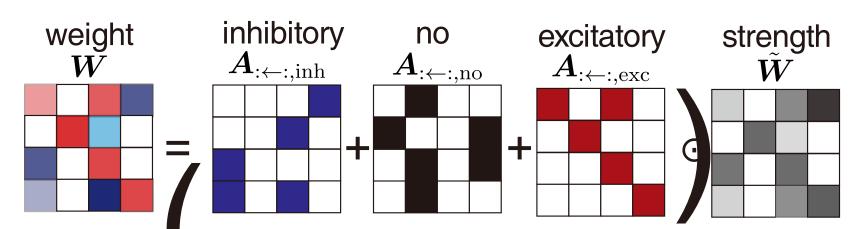


hidden markov process

Poisson spikes GLM

one-hot decomposition

shared connection prior



3 Inference

E-step, forward-backward algorithm

- Define $\gamma_{z_t}(t) \coloneqq p\big(z_t \big| \mathbf{X}; \theta^{\text{old}}\big), \, \xi_{z_{t-1},z_t}(t) \coloneqq p\big(z_{t-1},z_t \big| \mathbf{X}; \theta^{\text{old}}\big)$
- Define $\alpha_{z_t}(t) \coloneqq p(x_1, ..., x_t, z_t)$
- Define $\beta_{z_t}(t) \coloneqq p(z_{t+1}, ..., z_T | \mathbf{x}_1, ..., \mathbf{x}_t, z_t)$
- Then, $\alpha_{z_t}(t)$ and $\beta_{z_t}(t)$ can be computed iteratively as

$$\begin{cases} \alpha_{z_t}(t) = p(\boldsymbol{x}_t | \boldsymbol{x}_1, \dots, \boldsymbol{x}_{t-1}, z_t) \sum_{z_{t-1}=1}^{S} \alpha_{z_{t-1}}(t) p(z_t | z_{t-1}), & \alpha_{z_1}(1) = p(z_1) p(\boldsymbol{x}_1 | z_1) \\ \beta_{z_t}(t) = \sum_{z_{t+1}=1}^{S} \beta_{z_{t+1}}(t+1) p(\boldsymbol{x}_{t+1} | \boldsymbol{x}_1, \dots, \boldsymbol{x}_t, z_{t+1}) p(z_{t+1} | z_t), & \beta_{z_T}(T) = 1 \end{cases}$$

M-step

• With the inferred posterior for z, we can update θ by maximizing

$$Q(\theta, \theta^{\text{old}}) = \mathbb{E}_{p(\boldsymbol{z}|\boldsymbol{X}; \theta^{\text{old}})} \ln p(\boldsymbol{X}, \boldsymbol{z}; \theta) = \sum_{\boldsymbol{z}} p(\boldsymbol{z}|\boldsymbol{X}; \theta^{\text{old}}) \ln p(\boldsymbol{X}, \boldsymbol{z}; \theta)$$

$$= \sum_{z_1=1}^{S} \gamma_{z_1}(1) \ln p(z_1; \theta) + \sum_{t=2}^{T} \sum_{z_{t-1}=1}^{S} \sum_{z_{t-1}=1}^{S} \xi_{z_{t-1}, z_t}(t) \ln p(z_t|z_{t-1}; \theta)$$

$$+ \sum_{t=1}^{T} \sum_{z_t=1}^{S} \gamma_{z_t}(t) \ln p(\boldsymbol{x}_t|\boldsymbol{x}_1, \dots, \boldsymbol{x}_{t-1}, z_t; \theta).$$

4 Experiments

Synthetic

- S = 5 states, N = 20 neurons, T = 5000 time bins.
- Transition probability: $\pi_{s,s'} = 0.005 + 0.975 \cdot \mathbf{1}[s = s']$.
- 20 spike trains, 10 for training and 10 for test.
- Metrics:
 - Test log-likelihood (LL) ↑
 - State accuracy 1
 - Weight error ↓
 - Connection accuracy 1
 - Connection prior accuracy 1

Synthetic

Table 1: The quantitative results in terms of 5 metrics on the synthetic dataset.

method	LL ↑	state acc †	weight error↓	adj acc ↑	adj prior acc↑
GLM	$-8.43(\pm 0.18)$	$nan(\pm nan)$	$24.71(\pm 0.19)$	$43.12(\pm0.46)$	$44.81(\pm 0.61)$
HMM Corr	$-22.53(\pm0.64)$	$42.84(\pm 1.47)$	$nan(\pm nan)$	$34.04(\pm 0.12)$	$15.45(\pm 2.49)$
HMM Bern	$-5.68(\pm0.23)$	$87.95(\pm 0.93)$	$nan(\pm nan)$	$36.25(\pm0.25)$	$40.70(\pm 1.53)$
HG	$-5.49(\pm0.58)$	$37.73(\pm 2.80)$	$109.67(\pm 2.63)$	$34.17(\pm 0.08)$	$40.91(\pm 0.48)$
HG-L1	$9.14(\pm 0.18)$	$91.60(\pm 0.96)$	$23.14(\pm 0.08)$	$37.47(\pm 0.18)$	$48.44(\pm 0.57)$
GHG	$8.58(\pm 0.19)$	$91.80(\pm 0.92)$	$21.54(\pm 0.15)$	$42.53(\pm0.22)$	$48.93(\pm 0.54)$
GHG-L1	$9.77(\pm 0.20)$	$92.08(\pm 0.89)$	$14.16(\pm 0.07)$	$41.08(\pm0.22)$	$46.98(\pm0.60)$
OHG	$14.64(\pm 0.23)$	92.75 (± 0.87)	$10.99(\pm 0.21)$	73.90 (± 0.52)	80.60 (±0.59)

• OHG is the best in terms of all metrics

Synthetic

- OHG gets clear and accurate connectivities.
- OHG explicitly discriminate a weak connection and a no connection

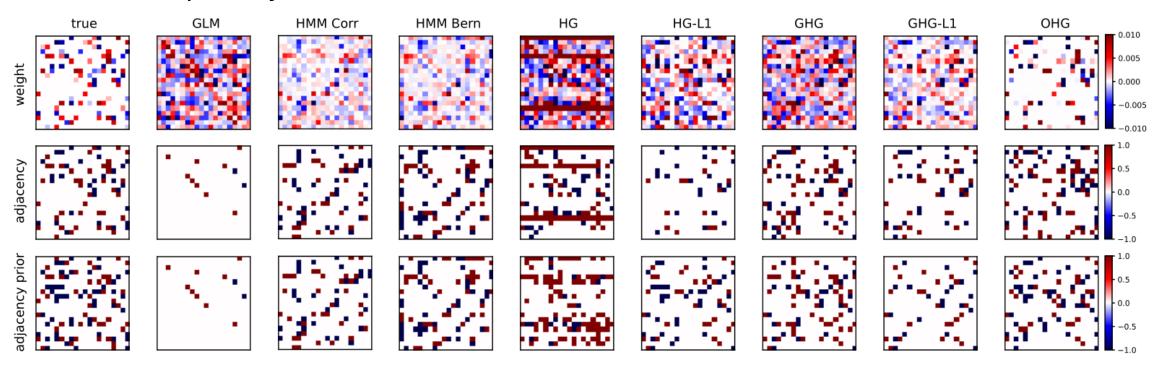


Figure 2: Visualization of weight W_2 (top row) and adjacency A_2 (middle row) corresponding to state 2 (S=5 in total), and the adjacency prior A_0 (bottom row) for all models learned from one trial of the synthetic dataset.

- https://crcns.org/data-sets/pfc/pfc-6
- Neural spike trains were collected while a rat learned a behavioral contingency task.
- 5 seconds before trial start 10 seconds after trial start.
- 750 time bins, bin size = 20 ms.
- First 2/3 trials are training, remaining 1/3 trials are test.
- Try different numbers of states $S \in \{2,3,4,5\}$.

Table 2: The log-likelihood on the test set for different models and different numbers of states of the PFC-6 dataset. The result from the one-state GLM is $-36.35(\pm0.00)$.

method	2 states	3 states	4 states	5 states
HMM Corr	$-37.11(\pm0.00)$	$-36.60(\pm0.00)$	$-36.53(\pm0.00)$	$-36.68(\pm0.00)$
HMM Bern	$-36.89(\pm0.00)$	$-36.57(\pm0.00)$	$-36.38(\pm0.00)$	$-36.38(\pm0.00)$
HG	$-37.30(\pm0.05)$	$-37.61(\pm 0.17)$	$-37.22(\pm 0.14)$	$-36.98(\pm0.19)$
HG-L1	$-36.91(\pm0.01)$	$-36.90(\pm0.02)$	$-36.73(\pm0.09)$	$-36.63(\pm0.13)$
GHG	$-37.17(\pm0.00)$	$-37.11(\pm 0.01)$	$-37.12(\pm0.00)$	$-37.11(\pm 0.00)$
GHG-L1	$-36.94(\pm0.00)$	$-36.88(\pm0.00)$	$-36.83(\pm0.00)$	$-36.77(\pm0.00)$
OHG	-35.92 (±0.02)	$-35.79(\pm0.02)$	$-35.77(\pm0.03)$	$-35.71(\pm 0.03)$

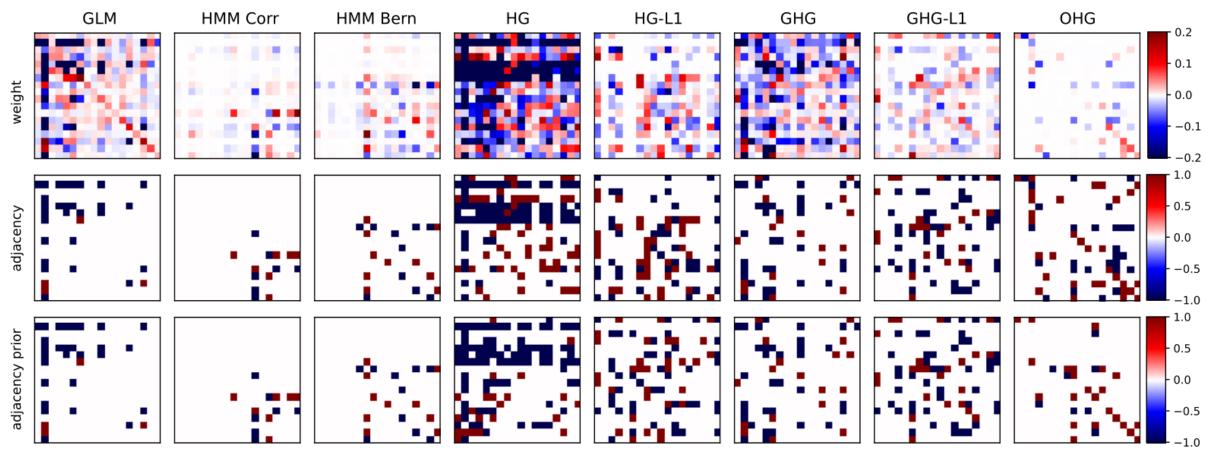
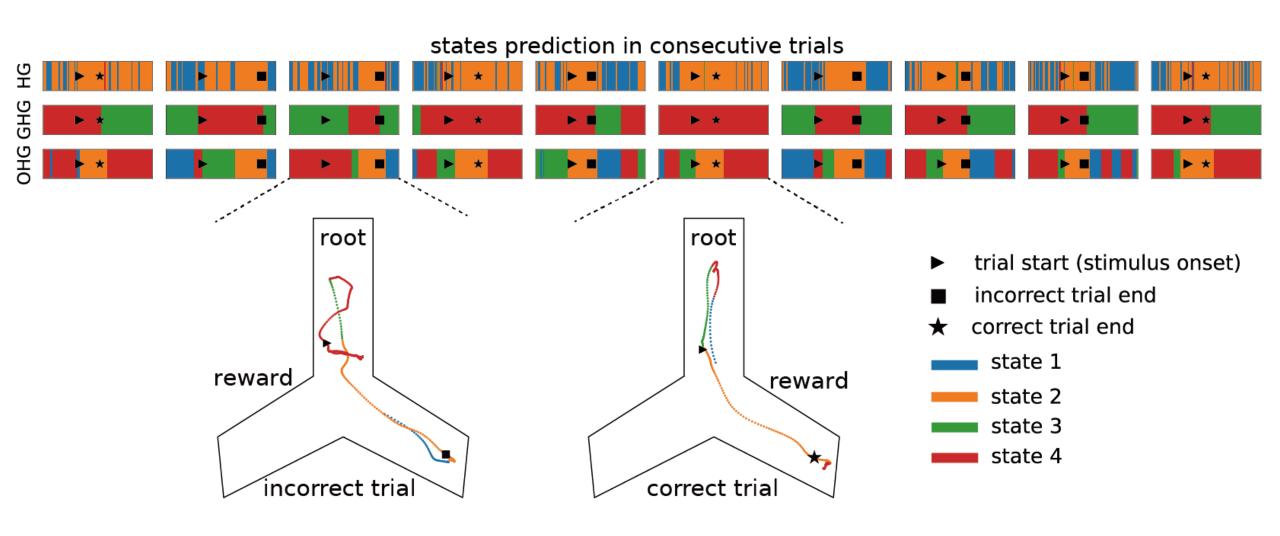
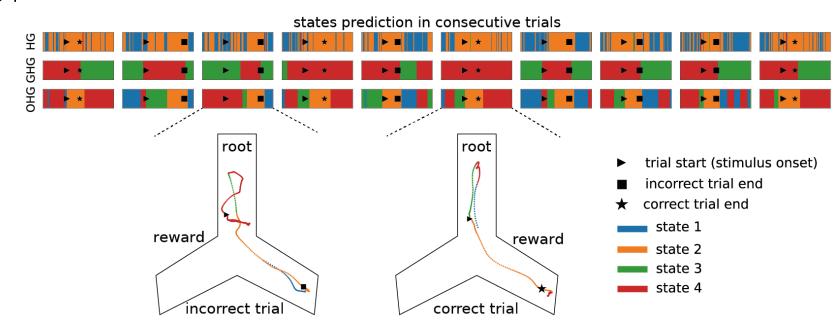


Figure 3: Visualization of weight W_4 (top row) and adjacency A_4 (middle row) corresponding to state 4 (S=4 in total), and the adjacency prior A_0 (bottom row) for all models learned from the PFC-6 dataset.



- HG: fast switches, limited interpretability
- GHG: S = 4 states are assumed, but GHG only infers two effective states
- OHG: 4 stable explainable states
 - Red: back to the root
 - Green: go to the turning point
 - Orange: reach a target
 - Incorrect trial: no reward, blue state
 - Correct trial: reward, red state

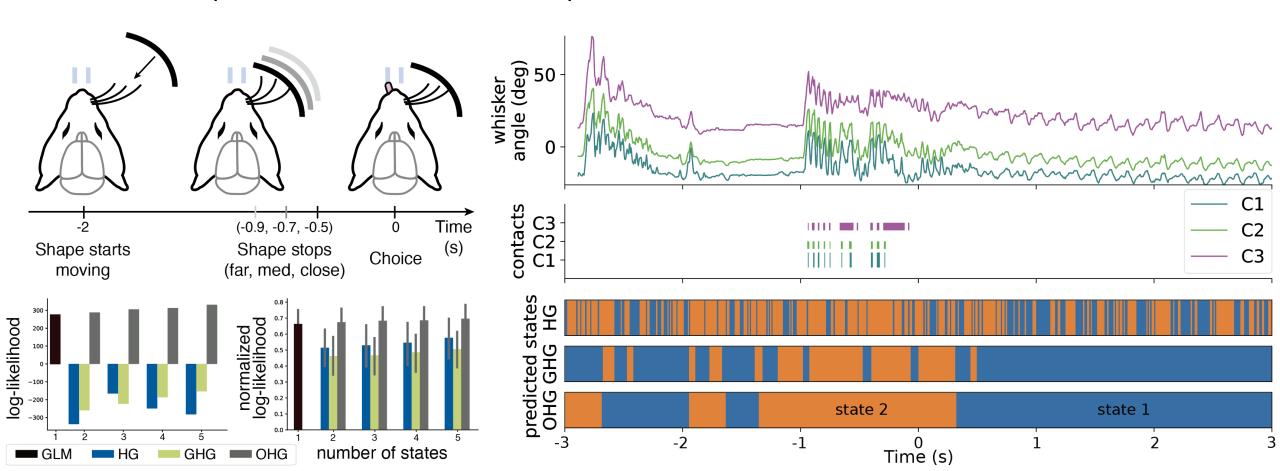


Barrel cortex during whisking

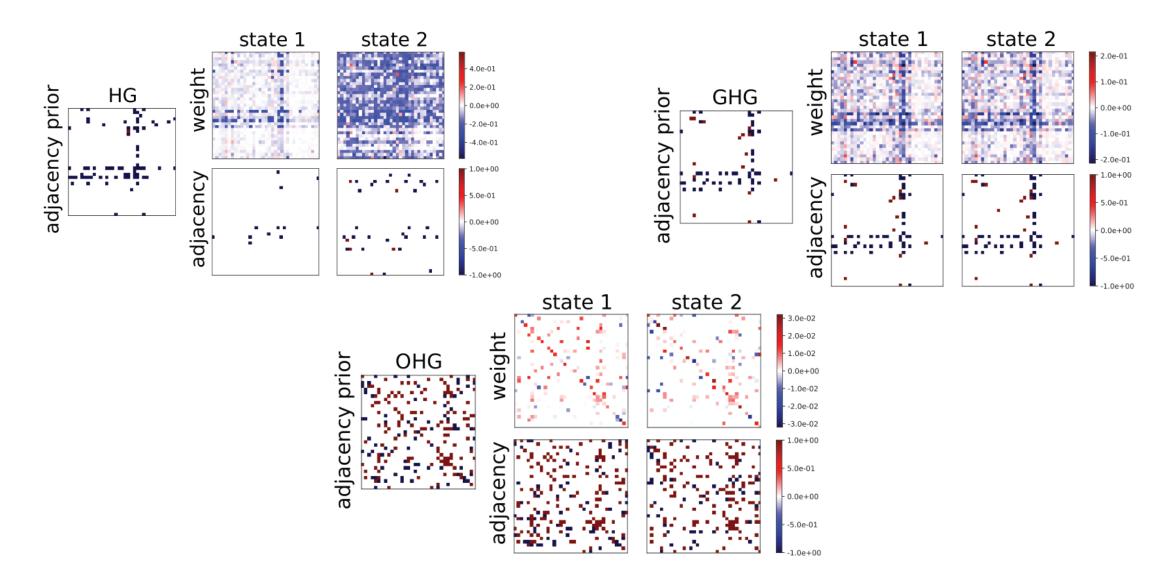
- Electrode recordings of the somatosensory (barrel) cortex in mice during a shape discrimination task (Rodgers et al., 2021; Rodgers, 2022; Nogueira et al., 2023).
- 27 sessions from 5 mice.
- Number of neurons N ranges from 20 to 44.
- 6 seconds for each trial. Bin size = 3 ms.
- 750 time bins, bin size = 20 ms.
- 10 of 30 trials are randomly selected for test.
- Try different numbers of states $S \in \{2,3,4,5\}$.

Barrel cortex during whisking

- OHG state 2 corresponds contacts
- OHG provides stable states prediction



Barrel cortex during whisking



Summary

- The newly proposed one-hot HMM-GLM decomposes the traditional weight matrix in GLMs into a discrete connection matrix with type and a positive-valued strength matrix. Such a decomposition is critical when applied to state-switching neural interaction discovery.
- The regulated connection matrices A_s in our OHG with their shared prior A_0 should inform us about underlying anatomical connectome and thus uncover the "more likely" physical interactions between neurons.
- The less restricted strength matrices $\widehat{\boldsymbol{W}}$ in OHG will provide us with sufficient traceability to capture functional variations across multiple brain states.

Thanks for listening!