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1 GP and GPLVM background



Gaussian process (GP)

• 𝑓 𝒙 is a stochastic function from GP
𝑓 ∼ 𝒢𝒫 𝑚 𝒙 , 𝑘 𝒙, 𝒙′

where 𝑚 𝒙 is the average output. The kernel function 𝑘 𝒙, 𝒙′

makes the closer the inputs 𝒙, 𝒙′ are, the higher the correlation 
of the outputs is, so that the function is smooth

• Method of sampling discretized GP outputs 𝒚 = 𝑦1, ⋯ , 𝑦𝑁
T on 

discretized inputs 𝑿 = 𝒙1, ⋯ , 𝒙𝑁
T:

𝒚 ∼ 𝒩 𝝁,𝑲

where 𝝁 = 𝑚 𝒙1 , ⋯ ,𝑚 𝒙𝑁
T, 𝑲 = 𝑘 𝒙𝑖 , 𝒙𝑗

𝑁×𝑁



Gaussian process (GP)
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Gaussian process latent variable model 
(GPLVM)
• Observation: 𝑿 = 𝒙1, ⋯ , 𝒙𝑇

T ∈ ℝ𝑇×𝑁, 𝑇 data points, 𝑁 
observation dimensions

• Latent variables: 𝒁 = 𝒛1, ⋯ , 𝒛𝑇
T ∈ ℝ𝑇×𝑀, 𝑀 latent dimensions

• Each observed dimension is sampled from GP independently
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Gaussian process latent variable model 
(GPLVM)
• Dimensionality reduction problem: when given 𝑿, find the optimal 
𝒁 under the GPLVM assumption

• Method 1: Optimization-based traditional GPVLM solver

• Method 2: Our newly proposed inverse kernel decomposition 
(IKD)
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Derivation of IKD, from 𝑘𝑖,𝑗 to 𝑑𝑖,𝑗

• Use the squared exponential (SE) kernel for example,

𝑘𝑖,𝑗 = 𝑘 𝒛𝑖 , 𝒛𝑗 = 𝜎2 exp −
𝒛𝑖 − 𝒛𝑗

2

2𝑙2
where 𝜎2 is the marginal variance and 𝑙 is the length-scale

• Denote the squared distance 𝑑𝑖,𝑗 ≔
𝒛𝑖−𝒛𝑗

2

𝑙2
, and let 𝑓 be the mapping 

rule of SE, then we can write

𝑘𝑖,𝑗 = 𝜎2𝑓 𝑑𝑖,𝑗 = 𝜎2 exp −
𝑑𝑖,𝑗

2

• Since 𝑓 is strictly monotonic, we can write the inverse relationship as

𝑑𝑖,𝑗 = 𝑓−1
𝑘𝑖,𝑗

𝜎2
= −2 ln

𝑘𝑖,𝑗

𝜎2



2 Method—IKD



Derivation of IKD, from 𝑫 = 𝑑𝑖,𝑗 𝑇×𝑇
to 𝒁

• Denote ෤𝒛 =
𝒛−𝒛1

𝑙
 with ෤𝒛1 = 𝟎, we have

𝑑𝑖,𝑗 =
1

𝑙2
𝒛𝑖 − 𝒛𝑗

T
𝒛𝑖 − 𝒛𝑗 = ෤𝒛𝑖

T෤𝒛𝑖 + ෤𝒛𝑗
T෤𝒛𝑗 − 2෤𝒛𝑖

T෤𝒛𝑗

• Making use of ෤𝒛1 = 𝟎, we can get 𝑑1,𝑗 = ෤𝒛𝑗
T෤𝒛𝑗, and finally obtains

Denote it as 𝑔 𝑫



Derivation of IKD, algorithm

• Compute the 𝑇 × 𝑇 correlation matrix 𝑺 of 𝑿

• መ𝑑𝑖,𝑗 = 𝑓−1 𝑠𝑖,𝑗  serves as an estimation of 𝑑𝑖,𝑗

• 𝑼, 𝜦 ← eigen-decomposition of 𝑔 ෩𝑫

• ෩𝑼 = 𝜆1𝑼:,1, ⋯ , 𝜆𝑀𝑼:,𝑀  is the optimal rank-𝑀 positive definite 
approximation of 𝒁, where 𝜆1, ⋯ , 𝜆𝑀 are the first 𝑀 largest 
(algebraically) positive eigenvalues of 𝑔 ෩𝑫  and 𝑼:,1, ⋯ , 𝑼:,𝑀 are 
the corresponding eigenvectors.



IKD with general stationary kernels

• Squared exponential: 𝑓 𝑑 = exp −
𝑑

2

• Generalize to ARD kernel: 𝑘 𝒛𝑖 , 𝒛𝑗 = 𝜎2 exp −
1

2
σ𝑚=1
𝑀 1

𝑙𝑚
2 𝑧𝑖,𝑚 − 𝑧𝑗,𝑚

2

• Generalize to Gaussian kernel: 𝑘 𝒛𝑖 , 𝒛𝑗 = 𝜎2 exp −
1

2
𝒛𝑖 − 𝒛𝑗

T
𝑳−1(𝒛𝑖 − 𝒛𝑗)

• Rational quadratic: 𝑓 𝑑 = 1 +
𝑑

2𝛼

−𝛼

• 𝛾-exponential: 𝑓 𝑑 = exp −𝑑
𝛾

2

• Matérn: 𝑓 𝑑 =
21−𝜈

Γ 𝜈
2𝜈 𝑑

𝜈
𝐾𝜈 2𝜈 𝑑

• No closed-form inverse, but it is solvable with root-finding algorithm



Dimensionality reduction on synthetic
dataset from GP

Visualization of the estimated
latent from different methods

• 𝒁 ∈ ℝ𝑇×3
𝒢𝒫
𝑿 ∈ ℝ𝑇×𝑁

IKD
෩𝒁

• Isomap is the best when 𝑁 < 50
• IKD is the best when 𝑁 > 50
• IKD is time efficient compared

with optimization-based
methods

• IKD captures the detail of the
latent very well



3 Experiments



Dimensionality reduction on synthetic
dataset from sine function

Visualization of the estimated
latent from different methods

• 𝒁 ∈ ℝ𝑇×1
sin⋅

𝑿 ∈ ℝ𝑇×𝑁
IKD

෩𝒁
• 𝒙𝑡 = sin 𝜴𝒛𝑡 +𝝋 + 𝜺𝑡, where

𝜺𝑡 are Gaussian noises

• Isomap is the best when 𝑁 < 50
• IKD is the best when 𝑁 > 50
• IKD is time efficient compared

with optimization-based
methods

• IKD captures the detail of the
latent very well



Dimensionality reduction on synthetic
dataset from Gaussian Bump function

Visualization of the estimated
latent from different methods

• 𝒁 ∈ ℝ𝑇×3
Gaussian Bump

𝑿 ∈ ℝ𝑇×𝑁
IKD

෩𝒁

• 𝑥𝑡,𝑛 = 20 exp − 𝒛𝑡 − 𝒄𝑡 2
2 + 𝜀𝑡,𝑛,

where 𝜀𝑡,𝑛 are Gaussian noises

• IKD is the best one among all methods 
for all observation dimensionality 𝑁 

• IKD is time efficient compared with
optimization-based methods

• IKD captures the detail of the latent
very well



Ablation study
Three 3D latents of different difficulty levels, four different kernels, GP mapping function



Ablation study

• IKD is always the best for the most commonly used SE kernel

• IKD is competitive when observation dimensionality is high

• IKD is time efficient compared with the traditional optimization-
based GPLVM solver



Real-world data

• Single-cell qPCR (PRC): Normalized measurements of 48 genes of a single 
cell at 10 different stages. There are 437 data points in total, resulting in 𝑿 ∈
ℝ437×84

• Handwritten digits (digits): It consists 1797 grayscale images of handwritten 
digits. Each one is an 8 × 8 image, resulting in 𝑿 ∈ ℝ1797×64

• COIL-20: It consists 1440 grayscale photos. For each one of the 20 objects in 
total, 72 photos were taken from different angles. Each one is a 128 × 128
image, resulting in 𝑿 ∈ ℝ1440×16384

• Fashion MNIST (F-MNIST) : It consists 70000 grayscale images of 10 fashion 
items (clothing, bags, etc.). We use a subset of it, resulting in 𝑿 ∈ ℝ3000×784



Digits dataset, 𝑿 ∈ ℝ1797×64

• Visually, 𝑡-SNE and UMAP are the best, then IKD, GPLVM, and
Isomap



PCR dataset, 𝑿 ∈ ℝ437×84



COIL-20 dataset, 𝑿 ∈ ℝ1440×16384

• Note that connected subgraphs are detected by IKD

• IKD should be the best since the observation dimensionality in this
dataset is very high



F-MNIST dataset, 𝑿 ∈ ℝ3000×784

• The most difficult dataset

• Optimization-based methods are better than non-optimization-
based methods



Quantitative comparison on real-world
dataset
• Reduce the dimensionality to 2,3,5,10 dimensional latent

• Use 5-fold cross-validation 𝑘-NN (𝑘 ∈ 5,10,20 ) to evaluate the
quality of the estimated low-dimensional latent

• Record the running time of each method



Quantitative comparison on real-world
dataset

• IKD is faster than
optimization-based
methods

• IKD is one of the best
among eigen-
decomposition-based
methods

• IKD is the most effective
method for high-
dimensional data



Quantitative comparison on real-world
dataset
• IKD, as an eigen-decomposition-based method, consumes short 

running time, but is able to obtain dimensionality reduction 
results better than other eigen-decomposition-based methods

• When facing high-dimensional observation data, IKD can perform 
significantly better than all other methods in a very short time

• In terms of running time, IKD is on par with Isomap, and these 
eigen-decomposition-based methods are significantly faster than 
those four optimization-based methods



Thanks! Questions…
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